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SECTION 1

tNIRODUCI ION

1.1 PLASMOIDS

Plasmoids can be described as a group of electrons and ions that

propagate as a unit throuqh vacuum. In their present conception they consist of

an expanding halo region, carrying return current and bearing a slight charge

imbalance, and an equilibrium core region that propagates like a pinched charged

particle beam. This model was first suggested by T. Lockner of Sandia. These

parts are illustrated in Figure 1. Since they are a type of charged particle

beam, they can be generated with higher efficiency and deposit their energy over

a deeper distance in matter than laser beams. This makes plasmoids attractive

for defense applications; however, the structure, formation, and propagation of

plasmoids in a space environment are not known at present. Theory and

one-dimensional simulations aimed at finding the core structure of plasmoids by

using variational principles have been ,uccessful. This report documents the

progress made in this first phase of research. A proposed second phase of

research will use similar techniques to model the three-dimensional formation

and propagation of plasmoids in a space environment.

1.2 PROGRESS IN PHASE-ONE RESEARCH

The first phase of research was aimed at understanding the core

equilibrium of a plasmoid as being the result of a relaxation process. In this

model the plasmoid was a minimum energy structure, and internal structure could

be found by variational calculus. This model was suggested by the success of

such methods in magnetic fusion work (Reference 1).

Progress has been made in the theory of plasmoid core equilibria of

three types (using cylindrical coordinates with z being the equilibrium axis):

(1) nonrotational equilibria,

(2) rotational equilibria with no axial magnetization

(Ve O J=O), and

(3) rotational, axially magnetized equilibria (VeO Jj 0

leadinq to a Bz field).

1-I
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~Figur'e 1. A plasmoid model that was first proposed by Torm Lockner

of Sandia National Laboratories.
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The variational method, called the method of Lagrdnge multipliers

(Reference 2), was applied originally in one Lorentz frame. rhis frame of

reference, called the z-pinch frame, is a frame where the core equilibrium is

charqe neutral and electrons and ions move past each other, so their currents

add. The plasmoid core equilibrium can, therefore, be understood as a Lorentz

transformed z pinch. However, the variational princiP-0 ,riginall) was

formulated in the z-pinch frame only and assumed similar density profiles for

electrons and ions. A generalized variational principle, valid in all Lorentz

frames and requiring similar profiles for both electrons and ions in all frames,

has now been formulated. The principal of Lorentz invariance strongly indicated

the form of the variational problem and the Lorentz invariant variational

principal was found to predict the three types of equilibria mentioned earlier.

Simulations of the three types of equilibria discussed were performed

assuming rotational and axial symmetry, that is, effectively one-dimensional.

The simulations consisted of equilibria initialized in steady-state and

nonequilibrium configurations that were allowed to relax to equilibrium. The

simulations demonstrated that the equilibria predicted by variational theory did

exist and were unique end states of the relaxation process. Simulations also

demonstrated that relaxation to final profiles was slower than the expected ion

traitit time timescale, and instead proceeds according to a Bohm diffusion

timescale.

1.3 PLASHOID EQUILIBRIA AND Z-PINCH FRAME

Before proceeding to the body of this report it is useful to briefly

consider the equations of plasmoid equilibria. A simple method to generate

plasmoid equilibria, which also aids in understanding them, is to use the two

dimensional Virial Theorem (Reference 3). This theorem gives necessary

conditions for the existence of an infinitely long rotationally symmetric,

pinched equilibrium. This condition is:

2/c2-Q2 = 2NkT , (1.1)

where I is the total current in the equilibrium, Q is the total charge per unit

length, 2NkT is the total thermil energy per unit length and c is the speed of

light. This condition can he inrdtrstood as a qeneralization of the Bennett

pinch condition (Reference 41.

1-3
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The quantities on both sides of Equation (1.1) can be shown to be

Lorentz invariants. Thus, a radial equilibrium in one frame can be shown to be

a radial equilibrium in all other Lorentz frames. This property of Lorentz

invarlance was used to create plasmoid beam equilibria in one frame, a frame in

which both electrons and ions moved toqether at nearly the speed of light, by

setting up a charge neutral (per unit length) z-pinch in a frame where electrons

and ions moved slowly in opposite directions at equal and opposite velocities

Po where po<<l. In this z-pinch frame Equation (1.1) becomes,

I z/C/ = l'/C - Q 2NkTf = 2NkT, (1.2)

where the primed quantities are transformed into the z-pinch frame. The

plasmoid equiiibrium was then merely a rapidly moving z-pinch. The electron and

io.i densities for equilibrium are then related by the ratio

* n./n = y/y (1 .3)

where ni and ne are the electron and ion densities respectively and where

Yj and Ye are the relativistic gamma factors for the ions and electrons

respectively, y p(1 -
2 )-1/ 2 where 0 = v/c.

One type of equilibria that was found was that of a Bennett profile

equilibrium with electrons and ions having similar profiles. The profile:) were

solutions to the set of coupled equations:

dn nine2  x
e kT e

-- e n [(P-e 1) (P P 1)] dx (1.4a)",,zd x e o' e e e
x 0 Ye

dn. n. -,e1  x Y.
- -- kT n [(p. - 1) - - (p P - 1)] dx (1.4b)

dx e x o Y i

where kTe  and kT. are the transverse temperatures of electrons and ions,
x = r2 and where p. and pi are the normalized electron and ion velocities,

respectively. The solutions are found to be

0.
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where nCL0 is the density on axis for either SPeCi. and where the Bennett

radius, a, is defined as:

2kT yZ
a = 1. (1.6)

TLe (Yiye(1 -ep() 1)n o

It "as shown further that. the quantity YiYe ( could be expressed

as cosh (zi-E e) where 6i and Se are equal to tanh-"pi and Ldnh -  e

respectively, and that this quantity was itself invariant between frames, as wasI." Ye/ni, so that the Bennett radius in all frames was equal to the value

[,-•.-it assumed in the L-pinch fraMe:

kT' (1.7)

Tte /n' 0 '
0 0

where n' and kT' are the common densities and transverse temperatures of the
0 0 2

electrons and ions in the z-pinch frame. The quantity 2p becomes equal to

cosh (-i - Ee) in the limit that po, the drift velocity of the electrons

and ions in the z-pinch frame, is small. The slow drift speed in the z-pinch

" rdme is one of rhe initial simplifying assumptions of the model.

U..It has been observed in simulations of plasmoid equilibria of general

initial profiles that electron and ion profiles evolve very quickly to the same

shape if their initial profiles are dissimilar. Also it has been observed that

once the profiles of electrons and ions become similar, thcre is a slower

evolution to a Bennett profile. This is true regardless of the initial profiles

for the plasmoids.

It will be one purpose of this report to explain why similar Bennett

profiles for electrons and ions should be expected for any nonrotatinq plasmoid

after many ion betatron periods. The reasons for this expectation, it will be

1-5
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shown, involve the tendenc for systems to seek their lowest dccessible energy

state and also their tendency to move to a stdte of maximuim entrbp). Possible

final states for beams with initial cannonical angular momentum are also of

interest and will be discussed.

%''. N.The method chosen for investigatinn these equiLihria isic'es will he a

variat ional approach. Variational principals have been shown to be powerful

techniques for predictinq the end conditions of \ery complicated sy stems. They

-- have found Increasing use in magnetic confinement fusion theorx to predict the

results of experiments (Reference 1).

Because of its compactness we will us,; fluid theory to descrine hedM

equilibria and their evolution. The same results could be obtained through

\lasov theory, but not without the loss of simplicity and easy understanding.

1.4 BASIC ASSUPTIONS Of RELAXATION MODELS

When a system evolves to maximize or minimize some global quantity the

system iz said to "relax". The relaxation of systems to minimum energy states

or maximum entropy is observed often in everyday life. The movement of water in

a sink to assume a common lowest level when more water is added is an example of

enerqy minimization. The diffusion of heat in a frying pan until its surface is

a unifuc:, temperature can be thought of as a maximization of entropy. It seems

reasonable to expect similar behavior in non-everyday systems: however, in

everyday systems the mechanisms for relaxation and dissipation are clearl\

understood. The production and subsequent phase-mixing and damping of water

*waves allows water to reach a common level and the process of heat conduction by

microscopic processes causes the frying pan to relax to a uniform temperature.

Therefore, when we consider the relaxation of intense particle beam equilibria

we must consider what process or processes will lead to dissipation and

* increases in entropy. In beam equilibria the particles will move in a

complicated system of inter*eaving orbits. Actual close approaches by

individual particles to one another so as to strongly perturb each others motion

wil he rare; however, strong oscillations of local space-charge density, caused

1-6
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b\ th collective interact ion of particles, Can stronqly perturb the motion of

h particles, both in groups of particles passing through each other (d two stream

instability) at high relative speed or bN stronq charqe sepdrdtions. These

oscillations can ledd to rapid exchange of enerqy and mutual perturbations of

orbits among particles.

This in turn will lead to a more uniform spread of enerq\ among

K , part icles and a more diffuse and more thoroughl mixed beam profile. The

'. diffusion among particles of enerq and the diffusion in space of particle

orbits h electrostatic and electromaqnetic instabilities can cause changes in

the beam profile to some preferred or more stable state. It is these observed

instabilities that will be assumed to lead to relaxation. These oscillations

can be expected to have frequencies of the order of the beam plasma frequencies

or the oarticle betatron frequencies. The frequencies are characteristic of

collect i'.e particle motion in the fields of the beam

2elp

!.5.

- where !1, is the mass of the particles.

Detailed analysis of the instabilities is ver complicated for general

beam profiles and will not be necessary for our purposes. We will merely assume

that the\ will exist, will create disorder, and dissipate energy. It will be

assumed that the oscillations form wa'ves that will move outward and be lost at a

ver large radius. The loss of information and enerqy from the system will be

considered irreversible.

Because we are concerned with the evolutinn of radial profiles we will

assume the beam equilibria are initic,.11y uniform in the z-direction and that

this condition is maintained throughout the equilibrium evolution to a final

state. We will thus not allow wave propagation in the z-direction. This wi

have the effect of not allowing two stream instabilities to grow from the

count erstredminq of the electrons and ions in the z-airection. Because this

counterstreaminq is assumed to he weak and thus, not a larqe source of free

energy, this should not be a had approximation.
,559
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Certain quantities are dla \s conserved, ev.en in complicdted sstems,

when a s~stem relaxes. Such quantities as total charge per unit length, current

in the z-direction and particle number (per unit length) will be assumed t.o be

unchanqed bv the rela\ation. The conservation of current being consistent *ith
our appro\imat ion of uniformit and non-propaqat ion of waves in the Z-direction.

Therefore, we will assume that collective oscillations on the order of

the betatron frequencies of the particles will provide a mechanism for

increasing entrop\ in the heam dnd remo inq fee enerqx. The beam WiII thus

minimize its free energ\ and maximize its entroo\. However, the final state of

the beam will have the same maqnetic enerq per unit lenqth.

1.5 OVERVIEW

In the second chapter of this report the theory of relaxation of

plasmoid equilibrium in two-dimensions will be discussed. It will be shown that

this relaxation can be studied in all frames through Lorentz invariant energy

constraints, Lhat is equivalent to a relaxation in the charge neutral z-pinch

frame. Because of this the z-pinch frame will be used for the majority of

theor\ and simulations. In the third chapter, results of simulations will be

compared with theory. A final chapter will summarize the results of this

research.

%
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SECTION 2

THE THEORY OF RELAXED PLASMOID EQUILIBRIA

2.1 RELAXATION IN THE Z-PINCH FRAME

The simplest place to demonstrate relaxation of a pldbmoid to

equilibrium is in the z-pinch frame. However, the basic model of pLasmoid

equilibrium requires Lorentz invariance, so that. a complet.e theory of reladXation

should apply in all frames.

One of the key assumptions that one makes in the z-pinch frame to

obtain an equilibrium is the assumption of similar density profiles for

electrons and ions. In the z-pinch frame this assumption is easy to justify on

the grounds that this minimizes the electric field enerqy, since all charge

densities vanish in the z-pinch frame for similar profiles. However, the

assumption of similar profiles does not result in the vanishing of electric

-. fields in other Lorentz frames because the charge densities are shifted by

" differing gamma factors. Therefore, one way to make the Lagrange minimization

Lorentz invariant is to find out if similar profiles for electrons and ions are

required for an equilibrium or are just a convenient assumption. To do this we

will reexamine the variational process in the z-pinch frame for a non-rotating

plasmoid and see if inything crucial has been left out.

The variational problem that applied in the z-pinch frame, *here

electrons and ions were assumed to have similar profiles, could be written:

F = - + ,nln(n) 21trdr , (2.1)

where B2/8n is the magnetic energy and n is the density and nin(n) can be

considered a thermodynamic entropy. The quantity X is a Lagrange multiplier

(Reference 2). The condition of maqnetic energy being minimized while entropy

is kept constant yields the condition,

,i.

2-1
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oF = OAB +JoJA, on Uln(n) 21rdr , (2.2)

*here A is the Vector potential and where we consider ,J en v1 and "e

consider v. constant.

This yields the equation

ev A + k ln(n) 0 , (2.3)
z L

and its derivative

ev nB = kT dn (2.4)
dr

. 2.2 THE LORENTZ GENERALIZED VARIATIONAL PRINCIPLE

This last equation is merely the equation for a Bennett pinch

(Reference 3) without rotation. The generalized Variational principle takes the

* form
E/-8B n .kT

F - + i 1 ln(nIkT.) + A2 n kT In (ne kT ) (2.5)
i e e

- n -

,, +k~kn. (n p + t Ln -(n e e 2  + .a(p - J /c )

0 where E is the electric field, Yi and Ye are the electron and ion gamma

factors, respectivel>, pi and pe are the electron and ion velocity

normalized to c, and pZ - J//c 2 is the electromagnetic four current. This

* generalization means that the Lorentz invariant form of electromagnetic field

6' strenqth is minimized while Lorentz invariant entropies and densities for both

species and the total Lorentz invariant charge density squared are all kept

J . constant. The results of this Variation of both ne and ni independently,

with the usual vanishing of 5,irface terms, can be expressed as:

2.

" 2-2
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+ U U*--T 2e (n -n -n p n p 0 (2.6)

-n A . + A, kT In n k. + A2(n-2p~n)

e I I.-ne~eII

+ , 2e (n -n -n p '-n p p.) = 0 (2.7)

enedi and thus, similar profiles. Similar prof!Ies for electrons and ions,

thus, are required bv minimization of E2-B 2 and simultaneous conservation of

'.'"Particle number and total charge. Differentiation leads to the equilibrium

equation Equations 1.4a and 1.tb.

2.3 ROTATIONAL EQUILIBRIA AND THE GALACTIC MDi)DE

The inclusion of rotation in the formalism is accomplished by the

rotation potential for each specie

r V2

m. ) 6i dr' (2.9)
0 rt

L V ,
- =vm dr' (2.9)

e 0 rt

where m i and me and V,.i and Vve are ion and electron masses in the frame

of interest and rotational velocities respectively. It should be noted that

nic i  and ne4De are Lorentz invariant. inclusion of strict angular

momentum conservation, it should be noted, results in unphysical equilibrium

when coupled with nonzero temperature; only uniform density, cosmos filling

O plasmoids are allowed. However, inclusion of niqi and nele will result

in a general class of rotating equilibria.

.- , The galactic rotation mode results when the condition

A A . . (2.10)
z e

2-3
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is applied. This condition occurs when the equilibrium is required to be

insensitive to changes in the entropy or temperature of the species. The

rotational velocity profile which results in Fiqure 2 is similar to that seen in

qalaxies (Reference 5). Some velocity profiles seen in galaxies are shown in

Fiqure 3. The qalactic mode Velocity profile seen in Figure 2 can be written

as,

V (r/a)0, _ (2.11)

V l+rL/a z

where V0  is an asymptotic equilibrium velocity. The conditions for the

derivation of the galactic mode, an insensitivity to temperature, indicate a

condition of nearly circular particle orbits. For the more realistic case of

very noncircular orbits, the conservation of angular momentum for individual

particles will cause a sharp peak to occur in the V, profile at smaller radii

as particles speed up. This can be included by an additional term in Equation

2.11.

V (1+r/a)

V _0o r>a , (2.12)

V+r 2 /a
2

V Y17 V r/a r<a (2.13)o

2.4 AXIALLY MAGNETIZED EQUILIBRIA

The case of rotational motion that produces current, and from this axial

magnetization, can be examined by including a Lorentz invariant,

J 9 - A" 2iTrdr (2.14)

while eliminating the invariants associated with entropy. It has been seen that

the introduction of axial magnetic flux, of comparable energy to thermal energy,

tends to cause a relaxation that is determined by field quantities rather than

matter: for this reason thermodynamic entropy seems to be unimportant.

2-4
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in the z-pinch frame this reduces to all integral over A" only and

Lagrange minimization gives the equation for equilibrium (Reference 6).

1 +

J = (2.15)

In this rase both axial current and maqnetic field assume the form of

a Bessel function,

- - J B (-) (2.16)
00 a

p.

r,

2-7
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SECIION 3

SIMJLATIONS OF SIEADY-STATE AND RELAXING EQUILIBRIA

3 .1 BASIC REQUIREMENIS FOR SIMULAIONS

Simulations of the three t~pes of equilibria discussed were

performed. The simulations consisted of equilibria initialized in steady-state

and noneqilbrium confiqurdtions that were allowed to relax to equilibrium.

The initializing of steady-state fields and currents in two-dimensions

.. 1 ,in an electromagnet lcal [y self-consistent manner proved more difficult than

' €anticipated. However, once numerical integrations over the actual particle

'%.

charqe densities and current were used, instead of idealized analytic ones,

simulations could be started without severe electromagnetic turbulence. Bepausp

of the fully electromagnetic nature of the code MAGIC (Reference 7), the

limitation on the timestep was determined by the Courant condition

: Y t > F-"x , (3.1)

c

where Z is the dimension of the smallest cell. This required thermal speeds for

"." ions and electrons tiat were close to the speed of -ight

V = c/3 (3.2)- th

This allowed significant particle dynamics to occur within a reasonable number

of timesteps.

3.2 SIMULATIONS, OF NONROTATING EQUILIBRIA

Simulations were performed in the z-pinch frame for reasons of

simplicity. Simulations of nonrotating equilibria were performed first. The

Bennett profile was observed to be stable for many thermal transit times:

= (3.3)
Vth

43-1
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where a is the Bennett radius. In Gaussian units, this is written:

mV z

a = _ t h (3.4)
2TLn e pz

where m is the ion or electron mass, no is t.he central number density, and 

is the drift velocity normalized to the speed of light. A level of fluctuations
of about 10% of the mean magnetic field and particle density was observed even

in stead\-state, as can he seen in Figure 4. Electrostatic oscillations were

observed to be stronqest in the center of the pinch.

A nonequilibrium, nonrotating beam was also simulated and allowed to

relax to equilibrium. The equilibrium appeared to approach the Bennett state

after many thermal transit times. Density profiles of the initial and final

* states are shown in Fiqure 5. This period of diffusion was much longer than

expected. The expected time for significant diffusion to occur was a few

thermal transit times.

3.3 ROTATIG, NON AXIALLY MGMETIZED EQULIBRIA

The case of rotating equilibria was simulated by being initialized in

both steady-state and nonequilibriun configurations. A steady-state rotational

velocity profile, consistent with a Bennett-like profile, was arrived at by

including the effect of large radial excursions of particles. This modified the

originallv predicted galactic mode as is shown in Figure 6. The rotating

nonequilibrium plasmoid was observed to relax to a rotation and density profile

close to the previously simulated steady-state.

3.4 AXIALLY MAGNETIZED EQUILIBRIA

The case of rotation with axial magnetization was simulated in both

steady-state and nonsteady-state cases. An approximately Bennett- or

Bessel-function-shaped profile with a modified qalactic mode was observed for
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~Fiqure 5. Initial (A) and final (B) density profiles for a plasmoid core

e equil11brium. Note the presence of strong density fluctuations n

~both initial and final states.
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the stead> -State rot at ion profiles in both cases. As shown in F igure 7, the

initial v and axial magnetic field profiles for an approximate St edd>-stdte

profile were preserved after man> particle transit times with only minor

chdnqes. The final state of a nonstead>-state initial profile also appeared to

rela\ to this state, thouqh the initial[ nonstead>-sta te profile was observed

to have reqions of axial maqnetic field reversa[ in late times. In qeneral, tht-

a\iall> magnetized state took lonqer to rela\ than those states without a\iil

maqnetizaton.

3.5 ttLLAXATION TIM S

1)Lffusion from uniform profiles to Bennett or Bessel function stead>-state

profiles took mrch longer than the predicted thermal transit time. Instead, the

diffusion timescale appeared consistent with a Bohm diffusion time (Reference

16 (3.5)
B

This is on the order of 100 thermal transit times. To test this d simulation

was run with the same Bennett radius, but with higher drift velocit, thus

qiving a shorter 5ohm time. Signs of enhanced diffusion were observed: however,

much longer simulations would have to be run to give d finitive proof that the

Bohm time in fact controls the diffusion process.
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SLCTION 4

SUMMARY AND FUTURL WORK

The proqram of theory and simulations has mdde great proqress.
Stead\-state equilibria of three basic tvpes have been ident ified theoreticdlIv

r-', and verified "ith simulations. The theory that a Lorentz invariant variational

problem could predict rela\ed, robust plasmoid core equilibria has been

verified. In addition, the relaxation process has been observed to occur for

these three cases and its timescale has been appro\imatel characterized. This

proaress can serve as a foundation for an e\panded effort to define plasmoids in

three dimensions as well as address the problem of propagation of plasmoids

across magnetic fields.
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